Conductive materials stimulate ruminal methanogenesis and induce microbial changes indicative of improved electron transfer

Abimael Ortiz-Chura^{1,2}, Milka Popova¹, Jairo Garcia-Rodriguez^{1,3}, Dominique Graviou¹ and Diego Morgavi¹

¹INRAE, France; ²INTA CONICET, Argentina; ³Univ Leon, Spain

8th International Greenhouse Gas & Animal Agriculture Conference June 5-10, 2022

> Methanogenesis and electron transfer in microbial ecosystems

Interspecies Electron Transfer (IET)

- > Dominant mechanism in the rumen
- \succ Electron shuttles \rightarrow H₂ and formate
- Electron donor: bacteria, protozoa and fungi
- Electron acceptor: methanogenic archaea

Extracellular electron transfer (EET)

> Methanogenesis and electron transfer in microbial ecosystems

Interspecies Electron Transfer (IET)

- Dominant mechanism in the rumen
- \succ Electron shuttles \rightarrow H₂ and formate
- Electron donor: bacteria, protozoa and fungi
- Electron acceptor: methanogenic archaea

Extracellular electron transfer (EET)

- Exchange of intracellular electrons with an extracellular electron donor/acceptor
 - \succ Electroactive microbes \rightarrow electrogens & electrotrophs
- ➢ GIT → flavins , sulfhydryl, humic compounds, Fe(III) oxides

In the rumen, the extent and importance of EET mechanisms is not known

Strategies to explore Extracellular Electron Transfer (EET)

Conductive materials (CMs) increases EET

Can promote biological processes

 $\rightarrow \uparrow$ methane production in some ecosystems

► CARBON-BASED MATERIALS

Activated charcoal and Graphene nanoplatelets
Provide an electron-conducting surface

MINERAL-BASED MATERIALS

Magnetite [Fe3O4; Iron(II,III) oxide]Acts as an electron conduit

INRAe

2022-06-07 GGAA Lovley, 202

Lovley, 2017. DOI 10.1016/j.coelec.2017.08.015 Lovley, 2017. DOI 10.1146/annurev-micro-030117-020420

> Hypothesis

Incubation of CMs in the rumen would increase methane production and the abundance of microbial communities associated with EET

- Does it change fermentation parameters?
- Which microbes could be associated with this presumed EET mechanism in the rumen?

> Objective

To test the effect of CMs on rumen fermentation and on microbial communities

> METHODS

A - In vitro experiment

In vitro batch culture technique (48 h)

> Donors of ruminal fluid: Four rumen-cannulated sheep

- ➤ Treatments
 - Control
 - Substrate: alfalfa:wheat; 3:1 ratio 2:1 buffer-rumen fluid mixture
 - Control + 5 and 10% of
 - Activated Charcoal (AC)
 - Graphene (GPH)
 - Magnetite (MAG)

2022-06-07 GGAA

> METHODS

B - In sacco experiment

➢Conductive materials (AC, GPH, MAG)

Membranes of the inert polymer polydimethylsiloxane containing CMs

Incubated in the rumen of four rumencannulated sheep

≻1 d

≽7 d

≽28 d

≻16S rRNA sequencing

INRA

Graphene and Magnetite increased methane production

p. 8

No changes in total gas production and VFA profile Conductive materials at 10% reduced total VFA production

> Microbial diversity associated to conductive materials

 \succ No differences in α diversity

Microbial communities differed between animals (P<0.01)</p>

> Within animals, the microbial communities differed between treatments

Activated Charcoal & Graphene increased the relative abundance of Euryarchaeota

> Changes at the genus level

> CONCLUSION

Increased methane production

Shift in microbes associated to conductive materials

\rightarrow suggests the presence of EET in the rumen

 \odot EET and mechanisms involved should be validated with additional tools

 Its extent in the rumen should be assessed as it could be another mechanism to consider for modulating methanogenesis

Acknowledgments >

CLIFF – GRADS Climate, Food and **GRA** Development

Farming Network

ON AGRICULTURAL GREENHOUSE GASES

Scholarships

	RESEARCH PROGRAM ON Climate Change, Agriculture and	6
CGIAR	Agriculture and Food Security	CCAFS

Thank you for your attention

GLOBAL RESEARCH

LIANCE

www.holoruminant.eu

