Reducing enteric methane emissions improves energy metabolism in livestock: is the tenet right?

D. P. Morgavi¹, G. Cantalapiedra¹, M. Eugène¹, C. Martin¹, P. Nozière¹, M. Popova¹, I. Ortigues-Marty¹, R. Munoz-Tamayo², E. M. Ungerfeld³

INRAE, ¹ARA Centre & ²AgroParisTech, France; ³INIA, Temuco, Chile

Livestock in numbers

- Sustain 1.3 billion people (direct and indirect jobs)
- 2% global GDP
- Food security
- Pivotal in human nutrition
 - 29% of the daily intake in protein
 - Large disparities between countries (49% HIC, 13% LIC)

EAT-Lancet reference diet

INRAe

Vaidyanathan, 2021

Livestock in numbers

- Sustain 1.3 billion people (direct and indirect jobs)
- 2% global GDP
- Food security
- Pivotal in human nutrition
 - 29% of the daily intake in protein
 - Large disparities between countries (49% HIC, 13% LIC)
 - 1.4% p.a. global food consumption (2030 horizon)
 - Insufficient to meet SDG 2 'Zero Hunger'
 - For meeting SDG 2 & keep Paris Agreement targets global animal productivity should increase by 31%
- Affect planetary boundaries
 - GHG emissions and Climate Change

Livestock emissions by species

Livestock emissions by region

Methane

Enteric fermentation

- 39% GHG from agriculture
- 27% global anthropogenic methane emissions

Methane

Enteric fermentation

- 39% GHG from agriculture
- 27% global anthropogenic methane emissions

Need for effective mitigation options

Applicable to different production systems

Adopted by end-users

- > (Inhibition of) enteric methanogenesis
 - Mitigation options and metrics

> (Inhibition of) enteric methanogenesis and animal productivity

Arndt et al, 2022

Mitigation options and adoption

- Adoption rate less 10% (Herrero et al. 2016)
- Absence of co-benefits that can compensate the extra cost and management constraints associated to methane mitigation options
- An expected co-benefit is:

to 'recover the energy lost as methane' for productive functions

> Inhibition of enteric methanogenesis and animal productivity

- Updated Ungerfeld (2018) meta-analysis
 - Specific inhibitors
 - ≥ 30% decrease
 - 34 treatment means for body mass gain (BMG)
 - 16 treatment means for energy-corrected milk (ECM)

> Inhibition of enteric methanogenesis and animal productivity

> Enteric methane and energy metabolism in the Holobiont

Traditional approach

p. 13

2022-09-12 ISEP INRAE, 2018

> Enteric methane and energy metabolism in the Holobiont

Physiological approach

p. 14

2022-09-12 ISEP

Energy spared from less methane production: where it goes and can it be redirected?

	Grass silage diet 350 kg BW fattening bulls		Corn silage diet 650 kg BW fattening bulls		
	Reference	-%25 CH₄	Reference		-%25 CH ₄
DMI, kg/d	7.04	7.04	10.7		10.7
Gross energy intake, MJ/d	126.39	126.39	197.53		197.53
Faecal energy, MJ/d	43.11	43.11	54.82		54.82
Digestible energy intake, MJ/d	83.28	83.28	142.71		142.71
CH ₄ emission, MJ/d	8.12	6.11	14.73		11.05
Urinary energy, MJ/d	4.52	4.52	7.62		7.62
Metabolisable energy intake, MJ/d	70.73	72.82	120.53		123.88
Total Heat production, MJ/d	62.78	63.61	100.44		101.70
Net energy in growth, MJ/d	8.04	8.87	20.26		22.14
Average daily gain, g/d	975	1 075 (+10%)	1 386		1 514 (+9%)

- Calculated increases in ADG are relatively small. Given the inter-individual variability large cohorts are necessary
- Digestibility Enteric methane trade-off

- > Energy spared from less methane production: where it goes and can it be redirected?
 - Similar results were obtained on milk production
 - 30%, 132 g CH₄/d decrease, expected increase ~1 to 0.6 kg ECM

Message

 moderate (25-30%) inhibition of methane production can, at best, induce modest changes in production that cannot be detected unless a large number of animals is used

 Assumes that energy not accounted as methane is conserved and can be used by the animal(!)

> Electron flows in the gastro-intestinal tract ecosystem

Fermentative anaerobes (primary & secondary fermenters)

Oxidized

Reduced

INRAe

Methanogens

> Enteric methane and energy metabolism in the Holobiont

Physiological approach

p. 19

> Energy metabolism in the rumen

> Is energy conserved when methane is not produced?

What happens in the rumen when methanogenesis is inhibited?

• Inhibitory effect on fermentation \rightarrow no practical or theoretical evidence

R. albus, anaerobic fungi cultured alone

or co-cultured with a methanogen

> Is energy conserved when methane is not produced?

What happens in the rumen when methanogenesis is inhibited?

- Inhibitory effect on fermentation \rightarrow no practical or theoretical evidence
- Changes in thermodynamic conditions
 - No relationship with total VFA concentration
 - Information on VFA production is lacking
 - Mathematical modelling can fill this void but experiments are needed to capture the dynamics of the system
- Effect on methanogens
 - Substrates used by methanogens are less efficiently used by other microbes
 - Methanogens ≤2% microbial biomass
 - Release back as methane up to 99% of substrates used
 - Energy spilling, storage of energy and maintenance in methanogens
- Effect on microbial biomass, ... ?

p. 22

> Fate of hydrogen

- Minor amount of energy from non produced methane is expelled as H₂
- Induce metabolome and microbiome changes in other animals
- H₂ in microenvironments (biofilms and aggregated microbial consortia) is not known

p. 23

> Closing knowledge gaps and further directions for exploration

Identified gaps

- VFA
- Metabolic changes in the microbiota/thermodynamic changes
- Heat of fermentation & heat production using the Brouwer formula
- Effect on microbial biomass

• To explore:

- Positive effects on host metabolites associated to energy
 - Yanibada et al., 2020, 2021, Kim et al., 2022
- Lessons learned from energy-harvesting microbiomes
 - relationship with methane production
- Increasing utilisation of H₂ from non-methanogens

> Take-home messages

- When inhibiting enteric methane production, feed energy not lost as methane is not consistently and entirely accounted as Net Energy for production purposes
- Improved models and equations are necessary for a better accounting of energy transactions when methane is inhibited
 - information that have to obtained
- The claim that enteric methane inhibition will translate into more feedefficient animals is not presently supported and should not be used to reinforce the narrative of sustainable farmed ruminants.

> Thank you for your attention

www.holoruminant.eu

Join the next generation publication model for open and transparent science

https://animsci.peercommunityin.org