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Reducing enteric methane emissions improves 
energy metabolism in livestock: is the tenet right ?
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• Sustain 1.3 billion people (direct and indirect jobs)

• 2% global GDP

• Food security

• Pivotal in human nutrition
• 29% of the daily intake in protein

• Large disparities between countries (49% HIC, 13% LIC)

Livestock in numbers

EAT-Lancet
reference diet

Vaidyanathan,
2021
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• Sustain 1.3 billion people (direct and indirect jobs)

• 2% global GDP

• Food security

• Pivotal in human nutrition
• 29% of the daily intake in protein

• Large disparities between countries (49% HIC, 13% LIC)

•  1.4% p.a. global food consumption (2030 horizon)
• Insufficient to meet SDG 2 ‘Zero Hunger’

• For meeting SDG 2 & keep Paris Agreement targets global animal productivity 
should increase by 31%

• Affect planetary boundaries
• GHG emissions and Climate Change

Livestock in numbers
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Livestock emissions by species

Global Livestock Environmental Assessment Model (GLEAM) FAO 
accessed 09/2022
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Livestock emissions by region

Global Livestock Environmental Assessment Model (GLEAM) FAO 
accessed 09/2022
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Enteric fermentation

• 39% GHG from agriculture

• 27% global anthropogenic methane emissions

Methane

Enteric 
fermentation
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Enteric fermentation

• 39% GHG from agriculture

• 27% global anthropogenic methane emissions

Need for effective mitigation options 

Applicable to different production systems

Adopted by end-users

Methane



• Mitigation options and metrics

(Inhibition of) enteric methanogenesis

Arndt et al,
2022



• Mitigation options and metrics

(Inhibition of) enteric methanogenesis and animal productivity

Arndt et al,
2022
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• Adoption rate less 10% (Herrero et al. 2016)

• Absence of co-benefits that can compensate the extra cost and 
management constraints associated to methane mitigation options

• An expected co-benefit is:  

to ‘recover the energy lost as methane’ for productive functions

Mitigation options and adoption
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• Updated Ungerfeld (2018) meta-analysis 
• Specific inhibitors

• ≥ 30% decrease

• 34 treatment means for body mass gain (BMG)

• 16 treatment means for energy-corrected milk (ECM) 

Inhibition of enteric methanogenesis and animal productivity
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Inhibition of enteric methanogenesis and animal productivity

Growth Milk
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±30%

±30%
±40%

±25%

Traditional approach

Enteric methane and energy metabolism in the Holobiont

Gross Energy
Apparent 

Digestible Energy
Metabolisable Energy Net Energy

CH4-Energy
k

Faecal Energy Total Heat 
Production

Urinary Energy

metabolic heat 
+ heat of fermentation

INRAE, 2018
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Physiological approach

Enteric methane and energy metabolism in the Holobiont

Fermentation Heat

Gross Energy Absorbed Energy Net Energy

CH4-Energy

Faecal Energy Metabolic Heat

Urinary Energy

?

Ortigues-Marty et al., 2019
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Energy spared from less methane production: where it goes and can it 
be redirected?

Grass silage diet

350 kg BW fattening bulls

Corn silage diet

650 kg BW fattening bulls

Reference -%25 CH4 Reference -%25 CH4

DMI, kg/d 7.04 7.04 10.7 10.7

Gross energy intake, MJ/d 126.39 126.39 197.53 197.53
Faecal energy, MJ/d 43.11 43.11 54.82 54.82

Digestible energy intake, MJ/d 83.28 83.28 142.71 142.71

CH4 emission, MJ/d 8.12 6.11 14.73 11.05

Urinary energy, MJ/d 4.52 4.52 7.62 7.62
Metabolisable energy intake, MJ/d 70.73 72.82 120.53 123.88
Total Heat production, MJ/d 62.78 63.61 100.44 101.70
Net energy in growth, MJ/d 8.04 8.87 20.26 22.14

Average daily gain, g/d 975 1 075 (+10%) 1 386 1 514 (+9%)

Guarnido Lopez et al. (2022), Bes et al. (2022)

• Calculated increases in ADG are relatively small.  
Given the inter-individual variability large cohorts are necessary

• Digestibility – Enteric methane trade-off
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Energy spared from less methane production: where it goes and can it 
be redirected?

• Similar results were obtained on milk production
• 30%, 132 g CH4/d decrease,  expected increase ~1 to 0.6 kg ECM

Message
• moderate (25-30%) inhibition of methane production can, at best, induce 

modest changes in production that cannot be detected unless a large 
number of animals is used

• Assumes that energy not accounted as methane is conserved and can be 
used by the animal(!) 
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How methane is produced

H2 CO2

Modified from Jeyanathan, 2014

monomers

Pyruvate

Acetate Butyrate Propionate

Acetyl coA Oxalo acetate Lactate

Succinate

[2H]

[2H]

[2H]

[2H]

[2H]

Formate

Feed (Carbohydrate polymers)

Methylated
compounds

CH 3COO- H2S NH4
+CH4

+ SO4
2-

+ NO3
-

Fermentative anaerobes
(primary & secondary 
fermenters)

Methanogens



p. 18
2022-09-12  ISEP

Electron flows in the gastro-intestinal tract ecosystem

H2

Acetate

Butyrate

Propionate

Formate

Feed

Methylated
compounds

CH4

Fermentative anaerobes
(primary & secondary 
fermenters)

Methanogens

Oxidized

Reduced

50~80% 

20~30%
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Physiological approach

Enteric methane and energy metabolism in the Holobiont

Fermentation Heat

Gross Energy Absorbed Energy Net Energy

CH4-Energy

Faecal Energy Metabolic Heat

Urinary Energy

?

Ortigues-Marty et al., 2019
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Energy metabolism in the rumen

Gross Energy

RUMEN MICROBIOTA

Growth

Maintenance

Energy spilling

Reserve carbohydrate

Adapted from Hackmann and Firkins, 2015 

33 to 66%

10 to 30%
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• Inhibitory effect on fermentation

Is energy conserved when methane is not produced?
What happens in the rumen when methanogenesis is inhibited? 

CH4

CO2

Acetate

Hexose

Pyruvate

Acetyl-SCoAEthanol

CO2

H2

2 H+

NAD

NADH

+ H+

Fdox

Fdred

inhibition

Fdox

ADP + Pi ATP

NADHNAD

R. albus, anaerobic fungi cultured alone

or co-cultured with a methanogen

→ no practical or theoretical evidence
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• Inhibitory effect on fermentation → no practical or theoretical evidence

• Changes in thermodynamic conditions
• No relationship with total VFA concentration

• Information on VFA production is lacking

• Mathematical modelling can fill this void but experiments are needed to 
capture the dynamics of the system

• Effect on methanogens
• Substrates used by methanogens are less efficiently used by other microbes 

• Methanogens ≤2% microbial biomass
• Release back as methane up to 99% of substrates used

• Energy spilling, storage of energy and maintenance in methanogens

• Effect on microbial biomass, … ?

Is energy conserved when methane is not produced?
What happens in the rumen when methanogenesis is inhibited? 
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• Minor amount of energy from 
non produced methane is 
expelled as H2 

• Induce metabolome and 
microbiome changes in other 
animals

• H2 in microenvironments 
(biofilms and aggregated 
microbial consortia) is not known

Fate of hydrogen

H2

H2

H2

H2

?
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• Identified gaps
• VFA

• Metabolic changes in the microbiota/thermodynamic changes

• Heat of fermentation & heat production using the Brouwer formula

• Effect on microbial biomass

• To explore: 
• Positive effects on host metabolites associated to energy

• Yanibada et al., 2020, 2021, Kim et al., 2022

• Lessons learned from energy-harvesting microbiomes 
• relationship with methane production

• Increasing utilisation of H2 from non-methanogens

Closing knowledge gaps and further directions for exploration
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• When inhibiting enteric methane production, feed energy not 
lost as methane is not consistently and entirely accounted as 
Net Energy for production purposes

• Improved models and equations are necessary for a better accounting of 
energy transactions when methane is inhibited
→ information that have to obtained

• The claim that enteric methane inhibition will translate into more feed-
efficient animals is not presently supported and should not be used to 
reinforce the narrative of sustainable farmed ruminants.  

Take-home messages
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Thank you for your attention

www.holoruminant.eu

Join the next generation publication model for open and transparent science

https://animsci.peercommunityin.org

https://animsci.peercommunityin.org/
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