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Livestock in numbers

Sustain 1.3 billion people (direct and indirect jobs)
2% global GDP
Food security

Pivotal in human nutrition
* 29% of the daily intake in protein

* Large disparities between countries (49% HIC, 13% LIC)
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Livestock in numbers

Sustain 1.3 billion people (direct and indirect jobs)
2% global GDP

* Food security

Pivotal in human nutrition

* 29% of the daily intake in protein

e Large disparities between countries (49% HIC, 13% LIC)
« AN 1.4% p.a. global food consumption (2030 horizon)

* Insufficient to meet SDG 2 “Zero Hunger’

* For meeting SDG 2 & keep Paris Agreement targets global animal productivity
should increase by 31%

Affect planetary boundaries
* GHG emissions and Climate Change
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> Livestock emissions by species
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Livestock emissions by region
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Methane

Enteric fermentation
* 39% GHG from agriculture
e 27% global anthropogenic methane emissions
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Methane

Enteric fermentation
* 39% GHG from agriculture

* 27% global anthropogenic methane emissions

Need for effective mitigation options
Applicable to different production systems
Adopted by end-users
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> (Inhibition of) enteric methanogenesis

e Mitigation options and metrics

' MITIGATION STRATEGY
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> (Inhibition of) enteric methanogenesis and animal productivity

e Mitigation options and metrics : _
Relative Treatment Effect on Animal Performance

Arndt et al,
2022
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Mitigation options and adoption

e Adoption rate less 10% (Herrero et al. 2016)

e Absence of co-benefits that can compensate the extra cost and
management constraints associated to methane mitigation options

* An expected co-benefit is:

to ‘recover the energy lost as methane’ for productive functions
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2 Inhibition of enteric methanogenesis and animal productivity

* Updated Ungerfeld (2018) meta-analysis
* Specific inhibitors
* >30% decrease
* 34 treatment means for body mass gain (BMG)
e 16 treatment means for energy-corrected milk (ECM)
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2 Inhibition of enteric methanogenesis and animal productivity
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> Enteric methane and energy metabolism in the Holobiont

Traditional approach

Apparent
Digestible Energy

Faecal Energy CH4-Energy Total Heat
Production
Urinary Energy

Gross Energy Metabolisable Energy Net Energy

+30%

metabolic heat

+ heat of fermentation +25%

+30% I
+40%
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> Enteric methane and energy metabolism in the Holobiont

Physiological approach

Gross Energy Absorbed Energy Net Energy
Faecal Energy Metabolic Heat

Urinary Energy

CH4-Energy

Fermentation Heat
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> Energy spared from less methane production: where it goes and can it
be redirected?

Grass silage diet Corn silage diet
350 kg BW fattening bulls 650 kg BW fattening bulls
_ Reference -%25 CH, Reference -%25 CH,
DMI, kg/d 7.04 7.04 10.7 10.7
Gross energy intake, MJ/d 126.39 126.39 197.53 197.53
43.11 43.11 54.82 54.82
83.28 83.28 142.71 142.71
CH, emission, MJ/d 8.12 6.11 14.73 11.05
4.52 4.52 7.62 7.62
Metabolisable energy intake, MJ/d 70.73 72.82 120.53 123.88
62.78 63.61 100.44 101.70
8.04 8.87 20.26 22.14
Average daily gain, g/d 975 1075 (+10%) 1386 1514 (+9%)

* Calculated increases in ADG are relatively small.
Given the inter-individual variability large cohorts are necessary

* Digestibility — Enteric methane trade-off
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> Energy spared from less methane production: where it goes and can it
be redirected?

e Similar results were obtained on milk production
* 30%, 132 g CH,/d decrease, expected increase ~1 to 0.6 kg ECM

Message

* moderate (25-30%) inhibition of methane production can, at best, induce
modest changes in production that cannot be detected unless a large
number of animals is used

e Assumes that energy not accounted as methane is conserved and can be
used by the animal(!)

INRAZ
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Feed (Carbohydrate polymers)

> How methane is produced
Methylated / 1

compounds monomers
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> Electron flows in the gastro-intestinal tract ecosystem

Feed N oxidized
Fermentative anaerobes
(primary & secondary Methylated / 1
fermenters) compounds Acetate
Butyrate

Formate 1

H2 =) Propionate
20~30%

1 50~80%

Methanogens

Reduced
CH, -
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> Enteric methane and energy metabolism in the Holobiont

Physiological approach

Gross Energy Absorbed Energy Net Energy
Faecal Energy Metabolic Heat

Urinary Energy

CH4-Energy

Fermentation Heat
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> Energy metabolism in the rumen

Gross Energy

Growth 33 to 66%

Maintenance 10 to 30%

Energy spilling

Reserve carbohydrate

p. 20

2022-:05-12 ISP Adapted from Hackmann and Firkins, 2015



> Is energy conserved when methane is not produced?

What happens in the rumen when methanogenesis is inhibited?

* Inhibitory effect on fermentation = no practical or theoretical evidence
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> Is energy conserved when methane is not produced?

What happens in the rumen when methanogenesis is inhibited?

* Inhibitory effect on fermentation = no practical or theoretical evidence

* Changes in thermodynamic conditions
* No relationship with total VFA concentration
* Information on VFA production is lacking
* Mathematical modelling can fill this void but experiments are needed to
capture the dynamics of the system

e Effect on methanogens

* Substrates used by methanogens are less efficiently used by other microbes
* Methanogens <2% microbial biomass

* Release back as methane up to 99% of substrates used

* Energy spilling, storage of energy and maintenance in methanogens

e Effect on microbial biomass, ... ?
INRAZ
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> Fate of hydrogen

* Minor amount of energy from
non produced methane is
expelled as H,

* Induce metabolome and
microbiome changes in other
animals

H, * H,in microenvironments
(biofilms and aggregated
microbial consortia) is not known
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Closing knowledge gaps and further directions for exploration

* |dentified gaps
* VFA
* Metabolic changes in the microbiota/thermodynamic changes

* Heat of fermentation & heat production using the Brouwer formula
* Effect on microbial biomass

* To explore:
* Positive effects on host metabolites associated to energy
* Yanibada et al., 2020, 2021, Kim et al., 2022
e Lessons learned from energy-harvesting microbiomes
* relationship with methane production
* Increasing utilisation of H, from non-methanogens
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> Take-home messages

* When inhibiting enteric methane production, feed energy not
lost as methane is not consistently and entirely accounted as
Net Energy for production purposes

* Improved models and equations are necessary for a better accounting of
energy transactions when methane is inhibited
- information that have to obtained

 The claim that enteric methane inhibition will translate into more feed-
efficient animals is not presently supported and should not be used to
reinforce the narrative of sustainable farmed ruminants.
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> Thank you for your attention

R i t
m a St e r Understanding microbiomes of the ruminant holobiont o
* *
* *

= www.holoruminant.eu

Join the next generation publication model for open and transparent science

cer Community In
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