

Effect of colostrum source and calf breed on diarrhoea incidents in pre-weaned dairy calves

Sabine Scully^{1,2}, Bernadette Earley¹, Paul E. Smith¹, Catherine McAloon² and Sinéad M. Waters¹

¹Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland

²School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

EAAP Congress 2023 – EAAP, Lyon, France

30 August 2023

Calf health and Diarrhoea

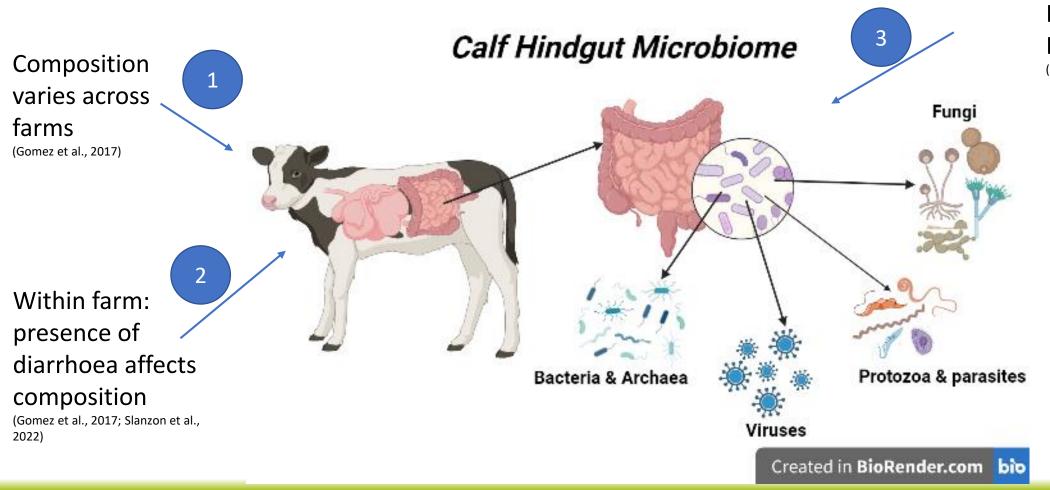
Diarrheal disease

- 40% of mortality in Ireland d0-5mo
- Short- and long-term economic impacts
- Immediate and long-term impacts on animal welfare

Predominant causes of death in calves from Birth to 1 yr. of age. DAFM All Island report 2020¹

Neonatal (birth to 1mo)	Calfhood (1mo-5mo)	Weanling (6mo – 1yr)
GIT Infections: 26%	Respiratory Infections: 33%	Respiratory Infections: 40%
Systemic Infections: 21%	GIT Infections: 14%	GIT Infections: 18%
Respiratory Infections: 10%	Systemic Infections: 11%	Systemic Infections: 12%

¹ Irish Department of Agriculture, Food and the Marine. 2021. All-Island Animal Disease Surveillance Report, 2020.



Microbiomes

Dysbiosis: loss of commensal microbes accompanied by proliferation of harmful pathogens

(Chase & Kaushik, 2019)

Other Factors:
Breed
Disease severity
(Slanzon et al., 2022)

Objective

To examine the effect of **colostrum source**, **calf breed**, and **health status** on the faecal microbiome of Jersey and Holstein heifer calves **throughout the pre-weaning period**.

Animal Model

Calves

51 spring born Holstein (HO) and Jersev (JE) cross heifers were fed 8.5% of birth weight (bw) in (n = 23) within 2 hours of birth. colostrum from their dam (n =

Health status: Diarrhoeic calv

weight:

HO: ~85kg

JE: ~75kg

Individual perio with straw up to 3d, group pens of 40 calves 3d to weaning

2nd feed-14d: whole milk via bucket with teat

14d + milk replacer via automated feeder

Dam groomed calf for ~ 30 min

Data Collection

- Clinical Assessment
- Sample collection: Faeces

Pre-diarrhoea

d7 (A)

Diarrhoeal disease d21-22 (B)

- Clinical assessment (faecal score of 2-3 to qualify as diarrheic)
- Sample Collection: Faeces, weight

- Clinical Assessment
- Sample Collection: Faeces, weight

Post-diarrhoea d82 (C)

January 2022

Faecal Sample Storage

- At collection: Liquid Nitrogen, Dry Ice
- Storage: -80° C

June 2022

Statistical analysis

SAS 9.4- PROC Mixed & Univariate (Wilcoxon)

Effects and interactions

Clinical Assessment:

A

B

C

No we

Pre-disease (d7)- all calves healthy Day of Disease (d21-22)

Faecal Scores:

Diarrheic: median 3 (2-3)

Healthy: median 0 (0-1)

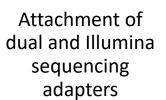
Rectal Temperature:

Elevated in diarrheic calves (+0.37°C (SE 0.01); P<0.05)

Postdisease (d82): all calves recovered

0.90

1.00


Faecal microbial DNA extraction and sequencing

150 faecal samples

Microbial DNA extraction (Yu and Morrison, 2004)

DADA2 & **SILVA**

PCR ZYMO RESEARCH amplificatio n of V4 **ZYMO DNA** Reference Standard region 16S rRNA gene (DS)

Sequencing results

- 3 time points (A, B, and C):
 - 396 genera detected as significant

95% of R.A.

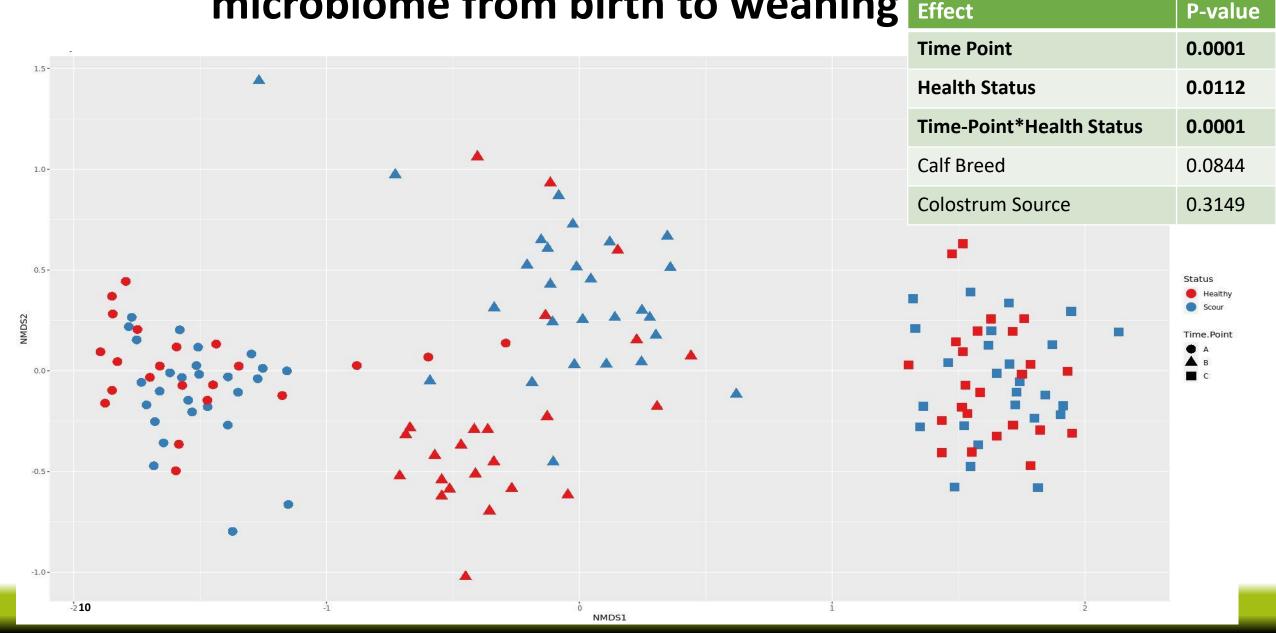
- 4,638 species
- 4 Phyla dominated:

• Firmicutes: 71%

• Bacteroidota: 15%

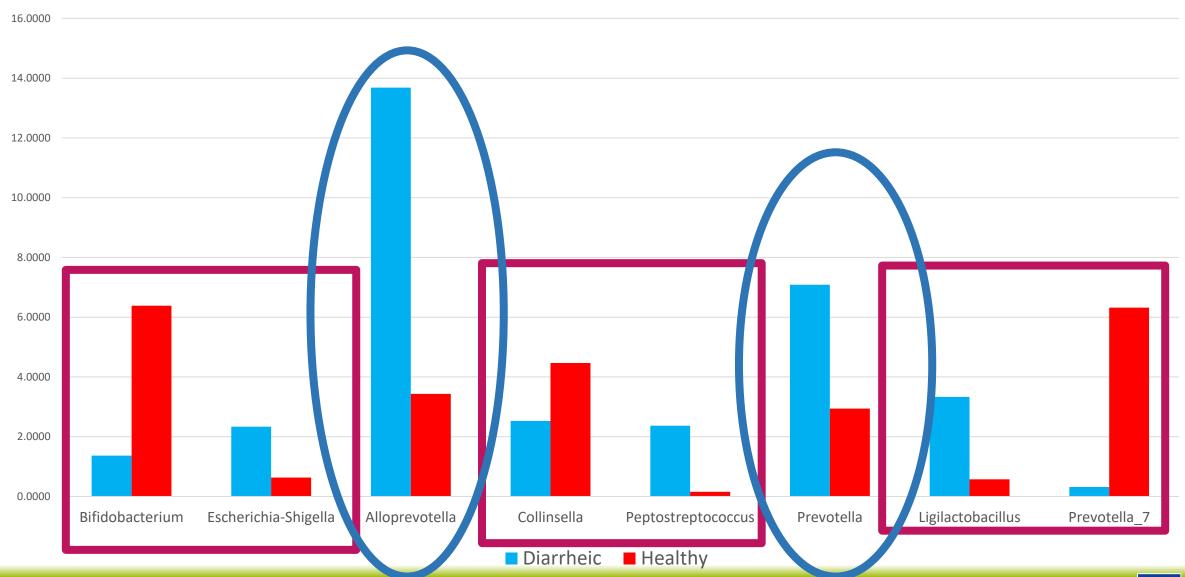
• Actinobacteria: 5%

• Proteobacteria: 4%

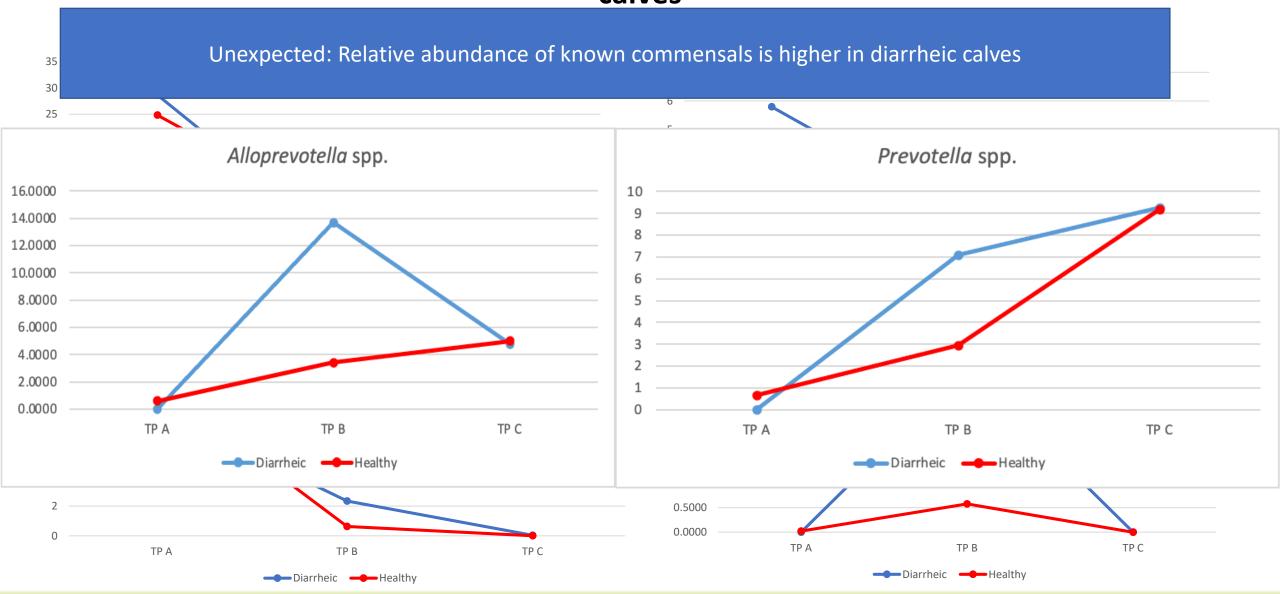

Number of ASVs significantly associated with Health Status across the pre-weaning period

	A	В	С
Genera	0	24	0
Species	0	43	0

Temporal changes in beta diversity of the faecal microbiome from birth to weaning Effect



At Disease Manifestation


Relative Abundance at Disease Manifestation (B)

Progression of relative abundance overtime in diarrheic and healthy calves

Conclusions

- α-diversity increased with age
- Interaction between time*health was significant
- Changes in relative abundance of microbes during diarrhoeal incidence confirms microbial dysbiosis
- Alloprevotella dominated diarrheic calves
 - Has not been previously associated with diarrhoea in calves

HoloRuminant WP3.1

Acknowledgments

Teagasc

Professor Sinead Waters
Dr. Bernadette Earley
Mr. Ricki Fitzgerald
Dairygold Research Farm Staff

UCD

Dr. Catherine McAloon
Dr. Conor McAloon

Funding

Horizon 2020 (*HoloRuminant*)
Grant Agreement N° 101000213

HoloRuminant PARTNERS

Thank you for your time

Sabine.Scully@Teagasc.ie

Office: +353 (0)46 906 1199

LinkedIn: Sabine Scully

Twitter: @SabsScully

