

II ANDALUCIA AGRO HUB

Granada, march 11-12th 2025

Effects of feed additives on blood parameters and rumen microbial fermentation in male dairy beef calves pre- and post-weaning

E. Romera-Recio¹, E. Ramos-Morales¹, A. Belanche², M. Hassan¹, P. Romero^{1,3}, A. Gomez¹, N. LLanes³, J. Torra³, D.R. Yañez-Ruiz^{1*}

¹ Dpto. Producción Sostenible de Rumiantes, Estación Experimental del Zaidín, CSIC, Granada, Spain.
² Dpto. de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain.
³Department of Animal Science, University of California, Davis, CA, USA.
⁴Ivars d'Urgell Cooperativa del Camp, Lleida, Spain.
*david.yanez@eez.csic.es

Introduction

- In intensive beef calf breeding, early separation from mothers impacts rumen microbial colonization. The rumen of calves is sterile at birth, and proper colonization is essential for their development.
- In Spain, 3-week-old calves face health challenges during long-distance transport to fattening farms, exacerbated by their **immature immune** systems and underdeveloped digestive tracts.
- Recent improvements in farm management focus on **nutritional strategies** and the use of **additives** to promote intestinal development and long-term health [1-3].

Materials and methods

- 112 male suckling calves were classified into 4 diet groups: CTL (no additives), EO (essential oils from plants), SYN (yeast probiotics) and MIX (mixture of probiotics and essential oils).
- Calves received their respective diet with additives in the concentrate feed for 45 days (until weaning). After weaning, all calves were switched to the MIX diet.
- Rumen content and blood samples were collected at days 35 (pre-weaning) and 105 (post-weaning).

Acknowledgments and funding

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement N° 101000213 (HoloRuminant).

Results

Table 2. Ruminal fermentation parameters and microbial population (qPCR) in suckling calves fed commercial additives.

	Mean					
Pre-weaning	CTL	MIX	EO	SYN	SEM	P-values
Total VFAs (mM)	92.9	104	101	90.8	5.38	0.222
Beta-Hidroxybutyrate (mg/dL)	2.33 ^c	2.88 ^{ab}	3.20 ^a	2.51 ^{bc}	0.18	0.004
рH	6.13	5.94	6.19	6.49	0.17	0.169
Microbial population						
Total Bacteria	9.27	9.26	9.35	9.32	0.04	0.273
Archaea	5.65	5.47	5.63	5.60	0.07	0.260
Protozoa	nd	nd	nd	nd		
Fungi	nd	nd	nd	nd		
Post-weaning	CTL	MIX	EO	SYN	SEM	P-values
Total VFAs (mM)	76.0 ^b	93.8a	102ª	94.4 ^a	4.72	0.002
Beta-Hidroxybutyrate (mg/dL)	3.07 ^b	4.56 ^{ab}	3.93 ^b	4.68ª	0.23	<0.001
рH	6.83a	6.42 ^b	6.61 ^{ab}	6.41 ^b	0.11	0.019
Microbial population Total Bacteria Archaea	10.5 6.33	10.6 6.39	10.5 6.43	10.6 6.34	0.31 0.17	0.997 0.973
Protozoa	nd	nd	nd	nd		
Fungi	3.20	3.22	3.19	3.14	0.04	0.387

Conclusions

- Dietary additives increased total volatile fatty acids (tVFAs) and β -hydroxybutyrate levels post-weaning, **enhancing ruminal fermentation**
- Rumen pH increased after weaning, and populations of bacteria and archaea also rose, while protozoa and anaerobic fungi remained mostly absent.
- The effect of the additives persisted two months later, highlighting the importance of applying such treatments early in the animal's development, when the rumen has greater plasticity.

Bibliography

- [1] Devant, M. & Marti, S. Animals vol. 10, 1–20 (2020).
- [2] Snelling, T. J. et al. Anim Microbiome 1, 16 (2019).
- [3] Yu, S. et al. Anim Feed Sci Technol 264, 114465 (2020).

FULL ACCESS TO THE ARTICLE

