II ANDALUCIA AGRO HUB Granada, march 11-12th 2025 # Effects of feed additives on blood parameters and rumen microbial fermentation in male dairy beef calves pre- and post-weaning E. Romera-Recio¹, E. Ramos-Morales¹, A. Belanche², M. Hassan¹, P. Romero^{1,3}, A. Gomez¹, N. LLanes³, J. Torra³, D.R. Yañez-Ruiz^{1*} ¹ Dpto. Producción Sostenible de Rumiantes, Estación Experimental del Zaidín, CSIC, Granada, Spain. ² Dpto. de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Zaragoza, Spain. ³Department of Animal Science, University of California, Davis, CA, USA. ⁴Ivars d'Urgell Cooperativa del Camp, Lleida, Spain. *david.yanez@eez.csic.es ## Introduction - In intensive beef calf breeding, early separation from mothers impacts rumen microbial colonization. The rumen of calves is sterile at birth, and proper colonization is essential for their development. - In Spain, 3-week-old calves face health challenges during long-distance transport to fattening farms, exacerbated by their **immature immune** systems and underdeveloped digestive tracts. - Recent improvements in farm management focus on **nutritional strategies** and the use of **additives** to promote intestinal development and long-term health [1-3]. #### Materials and methods - 112 male suckling calves were classified into 4 diet groups: CTL (no additives), EO (essential oils from plants), SYN (yeast probiotics) and MIX (mixture of probiotics and essential oils). - Calves received their respective diet with additives in the concentrate feed for 45 days (until weaning). After weaning, all calves were switched to the MIX diet. - Rumen content and blood samples were collected at days 35 (pre-weaning) and 105 (post-weaning). ## Acknowledgments and funding This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement N° 101000213 (HoloRuminant). ## Results Table 2. Ruminal fermentation parameters and microbial population (qPCR) in suckling calves fed commercial additives. | | Mean | | | | | | |---|-------------------|--------------------|--------------------|--------------------|--------------|----------------| | Pre-weaning | CTL | MIX | EO | SYN | SEM | P-values | | Total VFAs (mM) | 92.9 | 104 | 101 | 90.8 | 5.38 | 0.222 | | Beta-Hidroxybutyrate
(mg/dL) | 2.33 ^c | 2.88 ^{ab} | 3.20 ^a | 2.51 ^{bc} | 0.18 | 0.004 | | рH | 6.13 | 5.94 | 6.19 | 6.49 | 0.17 | 0.169 | | Microbial population | | | | | | | | Total Bacteria | 9.27 | 9.26 | 9.35 | 9.32 | 0.04 | 0.273 | | Archaea | 5.65 | 5.47 | 5.63 | 5.60 | 0.07 | 0.260 | | Protozoa | nd | nd | nd | nd | | | | Fungi | nd | nd | nd | nd | | | | Post-weaning | CTL | MIX | EO | SYN | SEM | P-values | | Total VFAs (mM) | 76.0 ^b | 93.8a | 102ª | 94.4 ^a | 4.72 | 0.002 | | Beta-Hidroxybutyrate
(mg/dL) | 3.07 ^b | 4.56 ^{ab} | 3.93 ^b | 4.68ª | 0.23 | <0.001 | | рH | 6.83a | 6.42 ^b | 6.61 ^{ab} | 6.41 ^b | 0.11 | 0.019 | | Microbial population
Total Bacteria
Archaea | 10.5
6.33 | 10.6
6.39 | 10.5
6.43 | 10.6
6.34 | 0.31
0.17 | 0.997
0.973 | | Protozoa | nd | nd | nd | nd | | | | Fungi | 3.20 | 3.22 | 3.19 | 3.14 | 0.04 | 0.387 | ## Conclusions - Dietary additives increased total volatile fatty acids (tVFAs) and β -hydroxybutyrate levels post-weaning, **enhancing ruminal fermentation** - Rumen pH increased after weaning, and populations of bacteria and archaea also rose, while protozoa and anaerobic fungi remained mostly absent. - The effect of the additives persisted two months later, highlighting the importance of applying such treatments early in the animal's development, when the rumen has greater plasticity. #### **Bibliography** - [1] Devant, M. & Marti, S. Animals vol. 10, 1–20 (2020). - [2] Snelling, T. J. et al. Anim Microbiome 1, 16 (2019). - [3] Yu, S. et al. Anim Feed Sci Technol 264, 114465 (2020). ### FULL ACCESS TO THE ARTICLE