

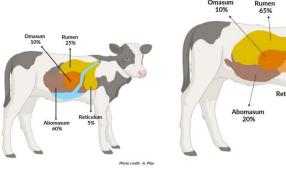
Effects of feed additives supplementation on rumen bacterial diversity and composition in calves during pre- and postweaning

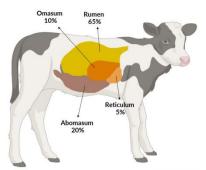
EVA Romera-Recio, EVA Ramos-Morales, YULIAXIS Ramayo-Caldas, ILMA Tapio, ALEJANDRO Belanche, NÙRIA Llanes, JOSEP Torra, and DAVID R. Yáñez-Ruiz*

4th June 2025

Introduction – Material and methods

Intensive milk production systems


Separated from their dams after birth Transported to a rearing farm (21 do) Transported to a final growing farm



Consequences:

Higher risk of respiratory diseases, diarrhoea, disbiosis

Compromised microbial colonization, rumen development, calf performance

112 male suckling Montbeliarde calves

Day 0 – 45 post-arrival

Day 45 - **MIX**

CTL - SYN- EO - MIX

Day 35 preweaning sampling

Day 105 postweaning sampling

Feed additives supplementation

CTL (no additive), EO (blend of essential oils), SYN (synbiotic yeast probiotic) & MIX (essential oils, yeast probiotics, & butyrate) applied until weaning.

Results

Previously Romera-Recio et al. (2025)...

No effects in performance (Body weight gain). Health status not compromised.

Rumen fermentation:

Beta-hydroxybutyrate (mg/dL)

- Preweaning: EO and MIX ≠ CTL
- Postweaning: SYN and MIX ≠ CTL

Total VFA (mM)

Postweaning: All treatments ≠ CTL

Butyrate (%)

Postweaning: EO ≠ CTL

Animal Feed Science and Technology 321 (2025) 116243

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Effects of feed additives in the diet of male dairy beef calves on physiological status and rumen microbial fermentation preand postweaning

E. Romera-Recio ^a, E. Ramos-Morales ^a, A. Belanche ^b, M. Hassan ^a, P. Romero ^{a,c}, A. Gómez ^a, I. Rivelli ^a, N. Llanes ^d, J. Torra ^d, D.R. Yáñez-Ruiz ^{a,*}

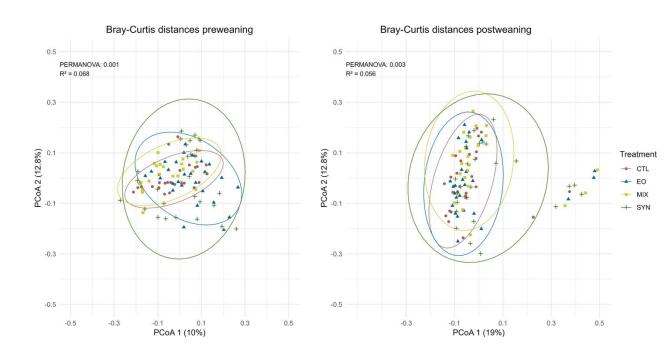
- a Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, Granada 18008, Spain
- b Departamento de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, Miguel Servet 177, Zaragoza 50013, Spain
- ^c Department of Animal Science, University of California, Davis, CA 95616, USA
- d Ivars d'Urgell Cooperativa del Camp, Lleida, Spain

Hypothesis:

To assess whether different **feed additives** influence **rumen microbial colonization** during the critical early developmental stage in calves.

Results - MetaT

Alpha diversity

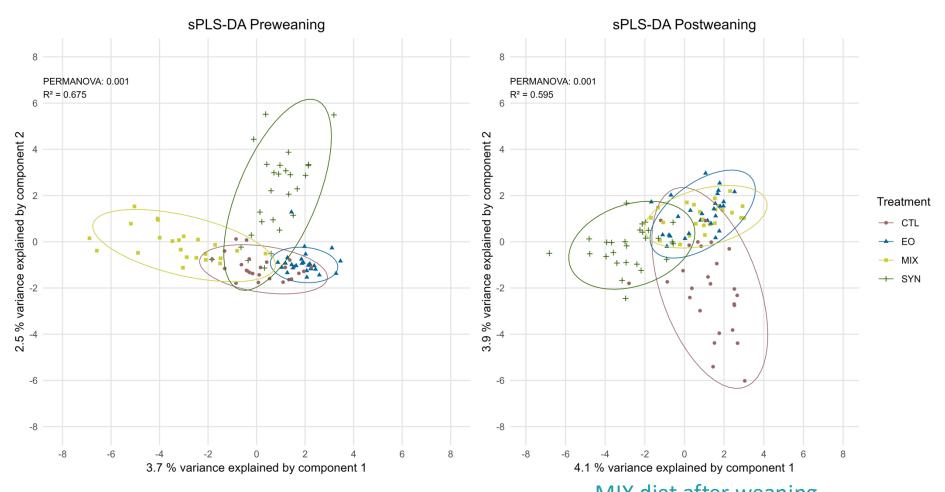

Bray-Curtis

Study time	Tuestusent	N	Bacteria		
	Treatment		Observed ASVs	Shannon	Simpson
Preweaning	CTL	26	200	3.90	0.960
	EO	27	204	3.92	0.961
	SYN	24	201	3.89	0.958
	MIX	27	197	3.93	0.961
p-value			0.737	0.843	0.742
Postweaning	CTL	26	215	3.94	0.959ª
	EO	27	212	4.06	0.967 ^b
	SYN	24	194	3.93	0.961 ^{ab}
	MIX	27	201	4.00	0.965 ^{ab}
p-value			0.099	0.119	0.042

Core microbiome

Preweaning Postweaning EO CTL EO CTL MIX SYN MIX/ SYN 0 2 0 4 310 318 0 0

Significant differences between dietary treatments.


No clear clustering pattern observed between groups.

Explained variation (R²): Preweaning: 6.80% vs. postweaning: 5.60%

Results - MetaT

Sparse partial least squares discriminant analysis

R²

- Preweaning: 0.675
- Postweaning: 0.595

Distinct microbial profiles emerged in
response to the different
dietary treatments.

MIX diet after weaning

MIX and SYN separated from CTL and EO

Microbial profiles of SYN and CTL remained distinct

Summary

- Dietary treatments shaped distinct rumen bacterial profiles.
- A resilient core microbiome was present across all treatments (80.1% shared across pre- and postweaning phases).
- Taxonomic shifts occurred with age, but **alpha diversity remained similar** among treatment groups.
- Beta diversity showed significant but modest group separation, with more pronounced preweaning effects.
- **sPLS-DA** revealed strong discrimination, especially preweaning, with lasting effects postweaning despite common diet, supporting a microbial carryover effect.

Early dietary modulation may impact long-term microbial maturation

Acknowledgement

Thank you for your attention!

Supervisors:

David Yanez-Ruiz - david.yanez@eez.csic.es

Eva Ramos-Morales - eva.ramos@eez.csic.es

PhD candidate:

Eva Romera-Recio - eva.romera@eez.csic.es

Results - MetaT

Unique ASVs detected in the treatments

Preweaning						
Treatment	ASVs	Taxonomy (Family)				
EO	ASV82, ASV58, ASV169, ASV162, ASV180, ASV17	Bacteroidaceae, Lachnospiraceae, Acidaminococcaceae				
SYN	ASV30, ASV78, ASV68, ASV75	Atopobiaceae, Eubacteriaceae, Lachnospiraceae, Acidaminococcaceae				
MIX	ASV343	Anaerovoracaceae				
CTL	ASV119, ASV44, ASV347	Lachnospiraceae, Bacteroidaceae, Coprobacillaceae				
EO + SYN + MIX	ASV276, ASV231, ASV291, ASV170, ASV332, ASV35	Oscillospiraceae, Sphingomonadaceae, Acutalibacteraceae, Coprobacillaceae, Acidaminococcaceae				

Postweaning					
Treatment	ASVs	Taxonomy (Family)			
EO	ASV40	Lachnospiraceae			
SYN	ASV332	Clostridia (CAG-508)			
MIX	-	-			
CTL	ASV360, ASV36, ASV138, ASV143, ASV188, ASV368,ASV64	Lachnospiraceae, Coprobacillaceae, Anaerovoracaceae			
EO + SYN + MIX	ASV304, ASV209, ASV68, ASV103	Lachnospiraceae, Erysipelotrichaceae, Clostridia (CAG- 508)			