The end of win-win solutions in controlling methane emissions from ruminants?

Diego Morgavi, Simon Roques, Maguy Eugène, Cécile Martin, Milka Popova

INRAE, Herbivores Research Unit, Clermont-Ferrand, Theix, France

Session 24 - Animal nutrition in circular economy - August 27th, 2023

Numbers, projections, needs & expectations

- World population is continuing to increase (~10.3 billion mid-2080, UN)
 - 0.85% yearly rate 2025
- Animal-derived food
 - Food security
 - Pivotal in human nutrition
 - ~300 kcal Healthy Diet Basket, EAT-Lancet Planetary Health Diet
 - 29% of the daily intake in protein
 - Large disparities between countries (49% HIC, 13% LIC)

μ.∠ n 2021

Numbers, projections, needs & expectations

FAO-NZ Agr. GHG Res. Centre – GRA

- Milk production 1.8% p.a. (2025-2034 OECD-FAO Outlook)
- Beef **1.4%** p.a., sheep meat 1.6% p.a.
- GHG **1**0.7% p.a.

Numbers, projections, needs & expectations

- Most ruminants are in grazing and mixed croplivestock systems
 - 75% of large ruminants
 - 85% of small ruminants
- Concentrated in tropical and subtropical regions

Numbers, projections, needs & expectations

- Affect planetary boundaries
 - GHG emissions and Climate Change
 - Land use
 - ...

INRAe

Methane

Enteric fermentation

- 27% global anthropogenic methane emissions
- 39% GHG from agriculture

International GHG reduction commitments

- COP 21 (UNFCCC Paris Agreement)
- EU 2030 reduce GHG by 40% based on 1990 levels.
- Global methane pledge 30% reduction from 2020 levels by 2030
- Net-zero agriculture 2050 EU USA

> Levers of action aiming to net-zero ruminant production

• Enteric methane: 35 – 60% GHG associated to milk or meat production Remaining % from manure, fossil fuel-energy, soil management

Management & Efficiency

- Improved production efficiency
 - ↓ maintenance
 - **Ψ** product footprint
- Great gains in the last 80 years
 - Specialized breeds & genetic improvements
 - Reproduction
 - Feeding and nutrition
 - Health, vaccination

Ex. Capper et al. 2009 for USA dairy

INRAe

Management & Efficiency

- Improved production efficiency

 - **Ψ** product footprint
- Great gains in the last 80 years
 - Specialized breeds & genetic improvements
 - Feeding and nutrition
 - Health, vaccination

Ex. Capper et al. 2009 for USA dairy

Caveats & trade-offs

- Gains in specialised systems likely to flattens, even reverse
- Resource-intensive systems
 - Human-edible feeds &/or arable land
 - Affect other planetary boundaries
- Societal acceptance

> Selecting for low methane emitters

- Heritable trait
 - Host
 - Microbiota
- Improved methods
 - Throughput measurement techniques
 - Proxies
 - Residual methane emissions
- Started to be included in breeding indices

Cautions - considerations

- Low emitters might have anatomical/physiological characteristics affecting other parameters (Goopy et al. 2014)
- Interaction genotype × diet → persistency (Münger & Kreuzer, 2008)
- Reports of impaired fibre OM utilisation (Stepanchenko et al., 2023; Kjeldsen et al., 2024)
- Scarce beef data

Diet

Major determinant of enteric methane production

Mechanisms

- 1. Affect methanogenesis substrates
- 2. Affect methanogens
- Feed digestibility,
- fermentation products,
- pH

Diet

Major determinant of enteric methane production

Mechanisms

- 1. Affect methanogenesis substrates
- 2. Affect methanogens
- Feed digestibility,
- fermentation products,
- pH

- Quantity (DMI)
- Composition
 - e.g., Concentrate v forage
 - ≥40% conc.
- Digestibility
 - e.g. Grass maturity
- Diet components
 - Lipids
 - Tannin-containing forages
 - Nitrate
 - ... and dozens of other reported

Diet

Major determinant of enteric methane production

Arndt et al. 2022 –

- Meta-analysis of 425 studies up to 2018
- 98 identified mitigation strategies :
- 3 strategies decrease emissions intensity (methane /kg meat or milk)

- ↑ concentrate
- ↓ grass maturity

-12%

- 4 decrease absolute emissions
 - Lipids (oils, fats, oilseeds)
 - Electron sinks
 - Tanniferous forages
 - Methane inhibitors

> Levers of action aiming to net-zero ruminant production

• Enteric methane: 35 – 60% GHG associated to milk or meat production Remaining % from manure, fossil fuel-energy, soil management

Achieving net-zero will require a strategy that has a direct effect on the rumen microbiota

> Rumen fermentation & microbiota modulation

Feed additives

"Only two additives decreased emissions by 20%"

- 3-nitrooxypropanol
- Halogenated compounds

Roques et al, 2024

> Rumen fermentation & microbiota modulation

Feed additives

"Only two additives decreased emissions by 20%"

- 3-nitrooxypropanol
- Halogenated compounds

Caveats & trade-offs

- No or scarce evidence of co-benefit
 - Cost

> What happens in the rumen when methanogenesis is inhibited?

Why is there no clear improvement in energy metabolism?

- H₂ accumulation Inhibit fermentation → no practical evidence
- Microbiota changes

R. albus, anaerobic fungi cultured alone

or co-cultured with a methanogen

p. 18

> What happens in the rumen when methanogenesis is inhibited?

Why is there no clear improvement in energy metabolism?

- H_2 accumulation Inhibit fermentation \rightarrow no practical or theoretical evidence
- Microbiota changes

- Minor amount of energy from non produced methane is expelled as H₂
- Induce metabolome and microbiome changes in other mammals

Knowledge gaps

- Flow of hydrogen / electrons
- H₂ in microenvironments (biofilms and aggregated microbial consortia) is not known

> What happens in the rumen when methanogenesis is inhibited?

Why is there no clear improvement in energy metabolism?

- H_2 accumulation Inhibit fermentation \rightarrow no practical or theoretical evidence
- Microbiota changes

Other identified gaps

- Metabolic changes in the microbiota/thermodynamic changes
 - No relationship with total VFA concentration
 - Information on VFA production is lacking
- Effect on microbial biomass

> Rumen fermentation & microbiota modulation

Feed additives

"Only two additives decreased emissions by 20%"

- 3-nitrooxypropanol
- Halogenated compounds

Caveats & trade-offs

- No or scarce evidence of co-benefit
 - Cost
- Incorporated homogeneously in the ration → Effective in TMR
- Safety, regulatory, sourcing challenges
- Societal concern
 - misinformation

Why misinformation about a cow feed additive prompted people to throw milk away

4 December 2024

Share < Save

Nick Eardley, Matt Murphy, Olga Robinson & Marco Silva BBC Verify

To all our customers, we do NOT use Bovaer. # #bovaer #cows #britishfarming #dairy #dairyfarm #dairycows

INRAO

2025-08-25 EAAP Innsbruck

> What is needed to reduce global emissions of enteric methane?

• Multi-layered approach that targets all levers

Multi-actor engagement

Research (R&D)

Combination of strategies

- Lipid (linseed oil): active throughout the day
- NO3: postprandial activity peak
- LIN+NIT: Additive CH4-mitigating effect

2025-08-25 EAAP Innsbruck

Combination of strategies is relevant

> What is needed to reduce global emissions of enteric methane?

• Multi-layered approach that targets all levers

Multi-actor engagement

Research (R&D)

Need for effective mitigation options

- Applicable to different production systems
- Specific vs generalist additives, other options
- Clear and unambiguous message

Specific inhibitors

- > Target methanogens
- > Synthetic compounds

Other

- ➤ Genetic eng. / CRISPR-Cas
- Phages

INRAe

Generalists (microbiota)

- **≻** EO, ...
- Multipurposed additives
 - Can provide co-benefits
 - Region-specific
- Electron acceptors
- Next-generation **DFM**

Other solutions

- > Delivery / protection methods
- Capture of methane produced by animals and their waste
- Climate-resilient forages/feeds (possible trade-offs)
- ➤ ...

> What is needed to reduce global emissions of enteric methane?

• Multi-layered approach that targets all levers

Multi-actor engagement

Research (R&D)
Industry (Milk & Meat)

Farmers

Consumers & society Governments

Need for effective mitigation options

- Need GHG emission reductions plan
 - Publicly available
 - Periodic reporting
 - Engage producers and consumers
- Adopted by end-users
- Accepted by consumers and society

> Thank you for your attention

