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Numbers, projections, needs & expectations

• World population is continuing to increase (~10.3 billion mid-2080, UN)
• 0.85% yearly rate 2025

• Animal-derived food
• Food security

• Pivotal in human nutrition
• ~300 kcal Healthy Diet Basket, EAT-Lancet Planetary Health Diet

• 29% of the daily intake in protein

• Large disparities between countries (49% HIC, 13% LIC)

Ruminants, humans and the planet 

Vaidyanathan, 2021
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Numbers, projections, needs & expectations

• Milk production 1.8% p.a. (2025-2034 OECD-FAO Outlook)

• Beef 1.4% p.a., sheep meat 1.6% p.a.

• GHG 0.7% p.a.

Ruminants, humans and the planet 

FAO-NZ Agr. GHG Res. Centre – GRA 
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Numbers, projections, needs & expectations

1576 M 1324 M 1127 M 209 M

Ruminants, humans and the planet 
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• Most ruminants are in 
grazing and mixed crop-
livestock systems 

• 75% of large ruminants

•  85% of small ruminants

• Concentrated in tropical 
and subtropical regions 

Livestock unit
400 M

200 M

1961

2021

FAOStat

Roques et al, 2024
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Numbers, projections, needs & expectations

• Affect planetary boundaries
• GHG emissions and Climate Change

• Land use

• …

1576 M 1324 M 1127 M 209 M

Ruminants, humans and the planet 

Biomass ∑ 2.4 
folds 
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Enteric fermentation

• 27% global anthropogenic 
methane emissions

• 39% GHG from agriculture

Methane

Enteric 
fermentation

International GHG reduction commitments

• COP 21 (UNFCCC Paris Agreement)

• EU 2030 – reduce GHG by 40% based on 1990 levels.

• Global methane pledge – 30% reduction from 2020 levels by 2030

• Net-zero agriculture 2050 EU - USA
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• Enteric methane: 35 – 60% GHG associated to milk or meat production
Remaining % from manure, fossil fuel-energy, soil management

Levers of action aiming to net-zero ruminant production

Diet

Animal genetics

Management &
Efficiency

Rumen fermentation
& Microbiota

CH4
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• Improved production efficiency
•  maintenance

•  product footprint

• Great gains in the last 80 years
• Specialized breeds & genetic 

improvements

• Reproduction

• Feeding and nutrition

• Health, vaccination

Ex. Capper et al. 2009 for USA dairy 

Management & Efficiency

Beauchemin et al., 2025

Gerber et al., 2011
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• Improved production efficiency
•  maintenance

•  product footprint

• Great gains in the last 80 years
• Specialized breeds & genetic 

improvements

• Feeding and nutrition

• Health, vaccination

Ex. Capper et al. 2009 for USA dairy 

Management & Efficiency

Caveats & trade-offs

• Gains in specialised systems 
likely to flattens, even reverse

• Resource-intensive systems
• Human-edible feeds &/or 

arable land

• Affect other planetary 
boundaries

• Societal acceptance
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• Heritable trait
• Host 

• Microbiota

• Improved methods
• Throughput measurement 

techniques

• Proxies

• Residual methane emissions

• Started to be included in 
breeding indices

Cautions - considerations

• Low emitters might have 
anatomical/physiological characteristics 
affecting other parameters
(Goopy et al. 2014)

• Interaction genotype × diet → persistency
(Münger & Kreuzer, 2008) 

• Reports of impaired fibre – OM utilisation
(Stepanchenko et al., 2023; Kjeldsen et al., 2024)

• Scarce beef data

Selecting for low methane emitters
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Mechanisms

1. Affect methanogenesis 
substrates

2. Affect methanogens

• Feed digestibility, 

• fermentation products,

• pH

Diet 
Major determinant of enteric methane production

Roques et al, 2024
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Mechanisms

1. Affect methanogenesis 
substrates

2. Affect methanogens

• Feed digestibility, 

• fermentation products,

• pH

• Quantity (DMI)

• Composition
• e.g., Concentrate v forage

• ≥40% conc. 

• Digestibility
• e.g. Grass maturity

• Diet components
• Lipids

• Tannin-containing forages

• Nitrate

• … and dozens of other reported

Diet 
Major determinant of enteric methane production
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Arndt et al. 2022 – 
• Meta-analysis of 425 studies up to 2018

• 98 identified mitigation strategies :

• 3 strategies decrease emissions intensity (methane /kg meat or milk)
↑ feeding level

↑ concentrate

↓ grass maturity

• 4 decrease absolute emissions
• Lipids (oils, fats, oilseeds) 

• Electron sinks

• Tanniferous forages

• Methane inhibitors

Diet 
Major determinant of enteric methane production

-12%

-17%



- 10 to 15%

- 10%

• Enteric methane: 35 – 60% GHG associated to milk or meat production
Remaining % from manure, fossil fuel-energy, soil management

Levers of action aiming to net-zero ruminant production

Diet

Animal genetics

Management &
Efficiency

Rumen fermentation
& Microbiota

CH4
(higher in less 
specialized systems)

up to - 20%

Achieving net-zero will require a strategy that has a direct effect on the rumen microbiota
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• Feed additives

“Only two additives decreased 
emissions by 20%”

• 3-nitrooxypropanol

• Halogenated compounds

Rumen fermentation & microbiota modulation

Hegarty et al, 2021

Roques et al, 2024
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• Feed additives

“Only two additives decreased 
emissions by 20%”

• 3-nitrooxypropanol

• Halogenated compounds

Rumen fermentation & microbiota modulation

Caveats & trade-offs

• No or scarce evidence of co-benefit 
• Cost 
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• H2 accumulation - Inhibit fermentation

• Microbiota changes

What happens in the rumen when methanogenesis is inhibited? 

CH4

CO2

Acetate

Hexose

Pyruvate

Acetyl-SCoAEthanol

CO2

H2

2 H+

NAD

NADH

+ H+

Fdox

Fdred

inhibition

Fdox

ADP + Pi ATP

NADHNAD

R. albus, anaerobic fungi cultured alone

or co-cultured with a methanogen

→ no practical evidence

Why is there no clear improvement in energy metabolism?
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• H2 accumulation - Inhibit fermentation

• Microbiota changes

What happens in the rumen when methanogenesis is inhibited? 

• Minor amount of energy from non 
produced methane is expelled as H2 

• Induce metabolome and microbiome 
changes in other mammals

Knowledge gaps

• Flow of hydrogen / electrons

• H2 in microenvironments (biofilms 
and aggregated microbial consortia) 
is not known

H2
H2

H2

H2

Fate of hydrogen?

Why is there no clear improvement in energy metabolism?

→ no practical or theoretical evidence

Morgavi et al, 2023
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• H2 accumulation - Inhibit fermentation

• Microbiota changes

Other identified gaps

• Metabolic changes in the microbiota/thermodynamic changes
• No relationship with total VFA concentration

• Information on VFA production is lacking

• Effect on microbial biomass

What happens in the rumen when methanogenesis is inhibited? 
Why is there no clear improvement in energy metabolism?

→ no practical or theoretical evidence

Morgavi et al, 2023
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• Feed additives

“Only two additives decreased 
emissions by 20%”

• 3-nitrooxypropanol

• Halogenated compounds

Rumen fermentation & microbiota modulation

Caveats & trade-offs

• No or scarce evidence of co-benefit 
• Cost 

• Incorporated homogeneously in the 
ration → Effective in TMR

• Safety, regulatory, sourcing challenges

• Societal concern
• misinformation
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• Multi-layered approach that targets all levers 

• Multi-actor engagement

Research (R&D)

What is needed to reduce global emissions of enteric methane?
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• Lipid (linseed oil): active throughout the day

• NO3: postprandial activity peak

• LIN+NIT: Additive CH4-mitigating effect

Combination of strategies is relevant

Combination of strategies

CH4 (g/kg DMI)

Guyader et al, 2015
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• Multi-layered approach that targets all levers 

• Multi-actor engagement

Research (R&D)

What is needed to reduce global emissions of enteric methane?

Generalists (microbiota)

➢ EO, …
➢ Multipurposed additives

- Can provide co-benefits
- Region-specific

➢ Electron acceptors
➢ Next-generation DFM  

Specific inhibitors

➢ Target methanogens
➢ Synthetic compounds
Other
➢ Genetic eng. / CRISPR-Cas
➢ Phages

Other solutions

➢ Delivery / protection methods
➢ Capture of methane produced 

by animals and their waste
➢ Climate-resilient forages/feeds 

(possible trade-offs)
➢ …

• Need for effective mitigation options
• Applicable to different production systems

• Specific vs generalist additives, other options

• Clear and unambiguous message
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• Multi-layered approach that targets all levers 

• Multi-actor engagement

Research (R&D)

Industry (Milk & Meat)

Farmers

Consumers & society

Governments

What is needed to reduce global emissions of enteric methane?

• Need for effective mitigation options

• Need GHG emission reductions plan 
• Publicly available

• Periodic reporting

• Engage producers and consumers

•  Adopted by end-users

•  Accepted by consumers and society
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Thank you for your attention

www.holoruminant.eu
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