

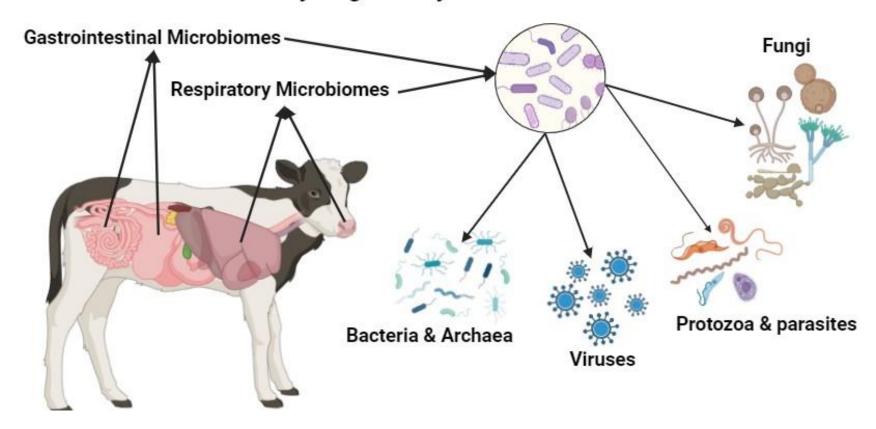
Identification of the core microbiota of bovine colostrum collected fresh from the dam

Sabine Scully^{1,2}, Bernadette Earley¹, Paul E. Smith¹, Catherine McAloon², Frank Buckley³, David. A. Kenny¹ and Sinéad M. Waters⁴

¹Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland, ²School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland, ³School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland, ⁴School of Biological and Chemical Sciences, University of Galway, Galway, Ireland

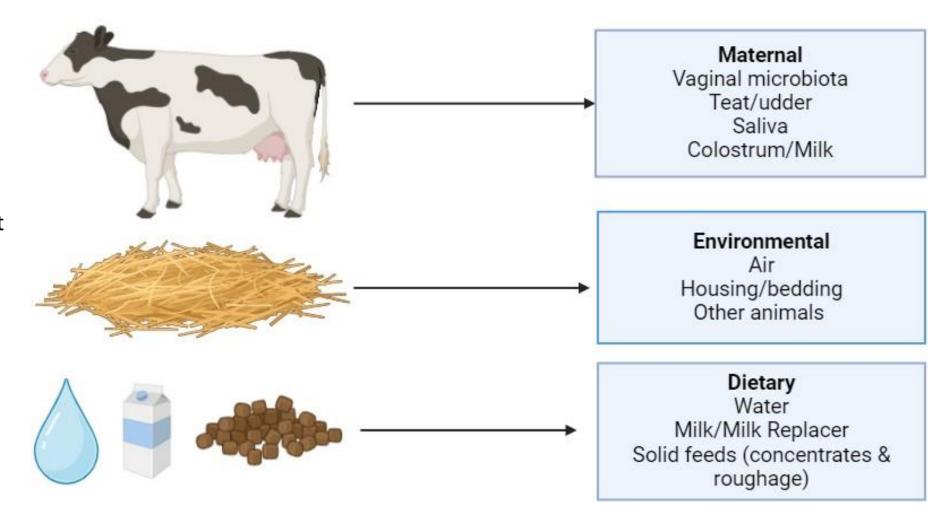
British Society of Animal Science Annual Meeting 2025

Galway, Ireland



Microbiomes

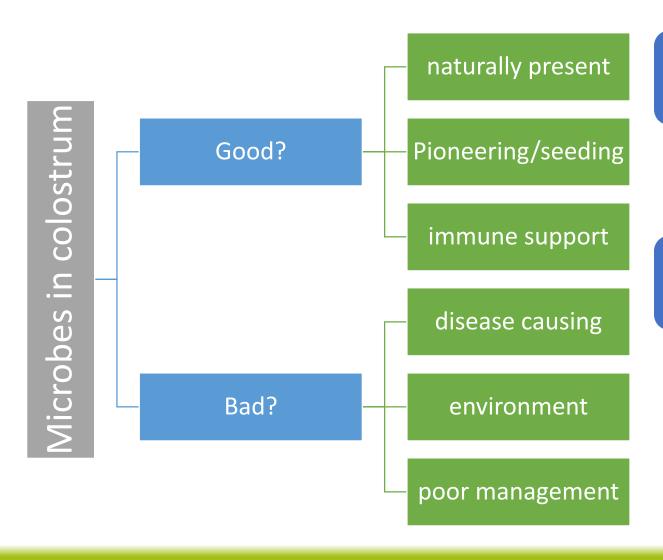
Healthy Microbiome Microbes live synergistically with each other & the host


Sources of pioneering microbes

Primary Role:

- "seed" & colonize the various microbiome sites
- Transition calf gut environment

Secondary Role:


- Metabolites for host and other microbes
- Immune and physiological development

Colostrum and microbes

Entero-mammary pathway

- Proven in humans, mice and pigs
- Growing evidence in cattle

Colostral microbes

- Essential in monogastric GIT Microbiome & immunological development
- Growing evidence in ruminants

Objective

to examine the core* bacteria identified in fresh colostrum collected from a single, spring-calving dairy herd.

*Core bacteria is defined as bacteria observed as present in all samples

Animal model and sampling protocols

Hygienic conditions

- Boiling water
- Anti-microbial soap
- Sterile collection tubes
- Gloves + 70%ETOH/MolH2O
- 70% ETOH+MolH2O

1 cow = 1 sample

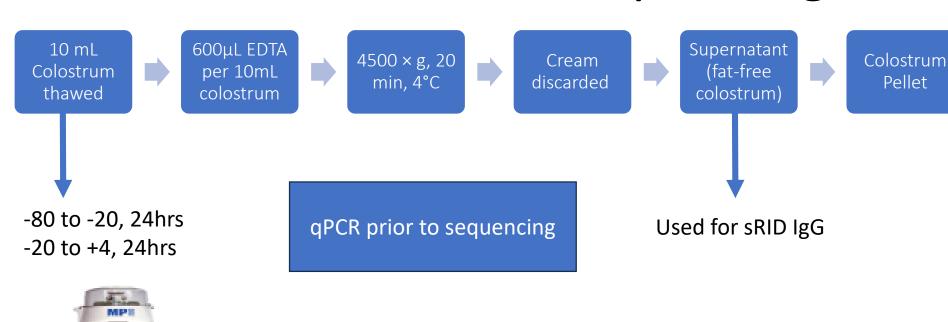
- Milked within 2hr parturition
- 3 x 10ml per sample

Snap Frozen immediately

• Stored at -80degC

SAMPLE POPULATION BY BREED AND PARITY

	Multiparous (n=17)	Primiparous (n=10)	Total (n=27)
Holstein-Friesian (n=17)	12	5	17
Jersey (n=10)	5	5	10
Total (n=27)	17	10	27


Microbial DNA extraction and sequencing

27 Colostrum Samples

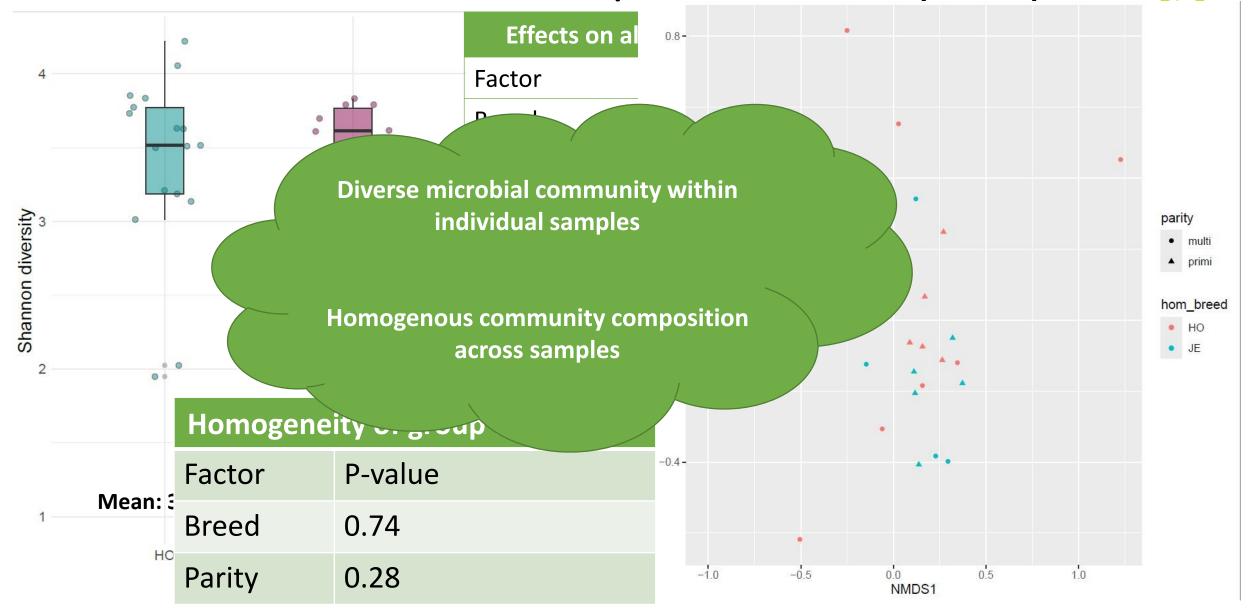
Colostrum Pellet

Microbial DNA extraction Attachment of dual and Illumina (Yu and Morrison, 2004) sequencing adapters

PCR amplification of V4 region 16S rRNA gene

R packages: Phyloseq, Vegan, Microbiome

Colostrum quality

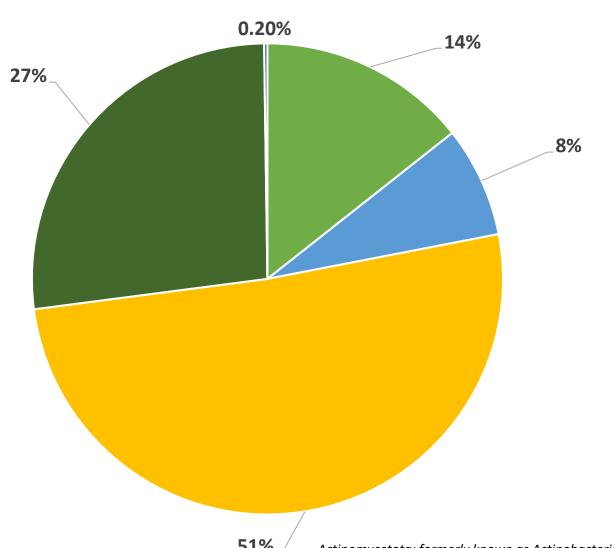


Statistics: SAS

- Normality and Homogeneity (UNIVARIATE procedure)
- ANOVA (MIXED procedure), fixed effects: Breed, Parity & Breed*Parity

Mean Colostrum Quality									
	Breed (B)		Parity (P)		P Value				
	НО	JE	SE	Primi	Multi	SE	В	Р	P*B
BRIX (%)	27.2	25.5	0.76	25.84	26.99	0.75	0.23	0.54	0.68
lgG (mg/mL)	152.09	148.04	8.14	141.47	155.95	7.95	0.73	0.24	0.19

Colostrum microbial diversity and community compositions



Predominant bacterial phyla

Relative Abundance of Bacterial Phyla in fresh colostrum

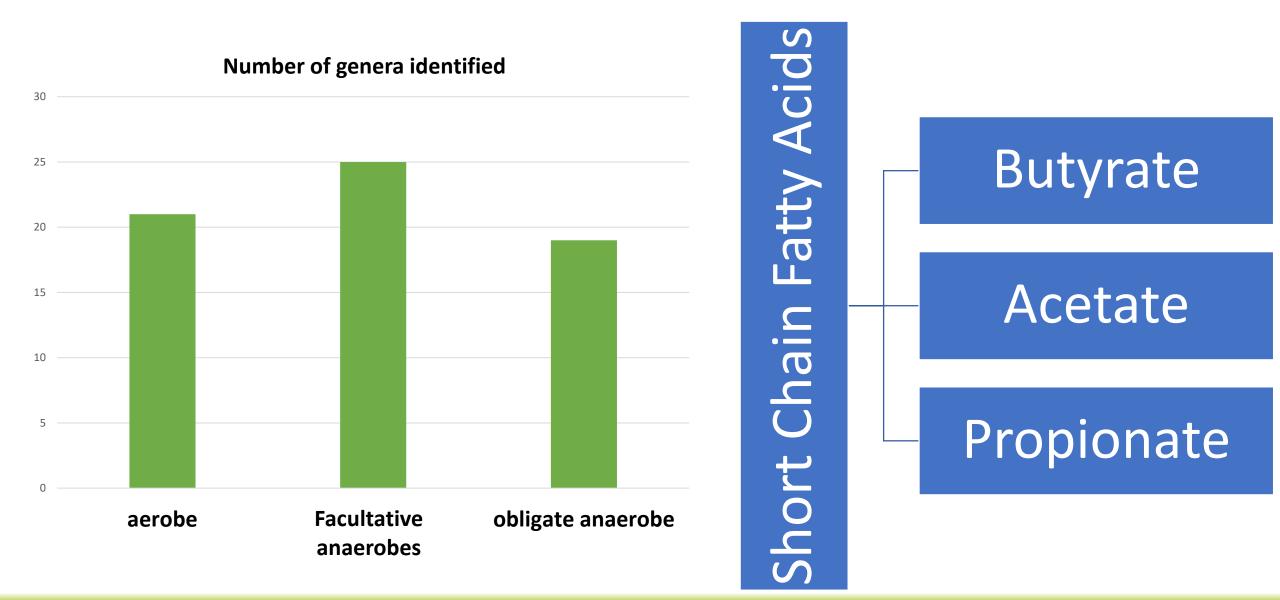
709 different genera

- Actinomycetota
- Bacteroidota
- Bacillota
- Pseudomonadota
- Verrucomicrobiota

51%

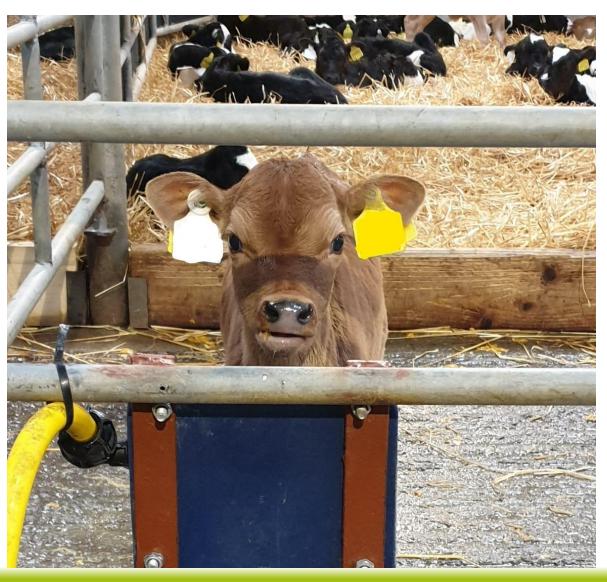
Actinomycetota: formerly known as Actinobacteria; Bacillota: formerly known as Firmicutes; Pseudomonadota: formerly known as Proteobacteria

Core bacteria in fresh colostrum



Phylum	Family	Genus	Relative Abundance (%)	
Pseudomonadota	Moraxellaceae	Acinetobacter	10.68	
Bacillota	Peptostreptococcaceae	Romboutsia	8.19	
Pseudomonadota	Pseudomonadaceae	Pseudomonas	7.18	
Bacillota	Staphylococcaceae	Staphylococcus	5.75	26 core bacteria identified
Actinomycetota	Corynebacteriaceae	Corynebacterium	5.25	
Bacillota	Lachnospiraceae	NK3A20 group	3.52	
Bacillota	Oscillospiraceae	UCG-005	2.41	Opportunistic pathogen/bovine
Bacillota	Peptostreptococcaceae	Clostridioides		commensal from other body site
Bacillota	Christensenellaceae	R-7 group	2.07	Primary pathogenic agent
Pseudomonadota	Moraxellaceae	Psychrobacter	2.01	,, ,
Actinomycetota	Micrococcaceae	Glutamicibacter	1.63	Known bovine gut commensal
Bacillota	Erysipelotrichaceae	Turicibacter	1.31	
Bacteroidota	Flavobacteriaceae	Flavobacterium	1.26	
Bacteroidota	Bacteroidaceae	Bacteroides	1.26	
Bacillota	Aerococcaceae	Facklamia	1.22	
Bacillota	Clostridiaceae	Clostridium sensu stricto 1	1.20	

Metabolic classification of genera identified



Future work

- Implications to calf health?
 - Viability of the microbes
 - Are these microbes alive when the calf consumes colostrum
 - If viable: Function of microbes
 - interactions with the host & other microbes
 - Contribution to microbiome development
 - Seeding and pioneering the gut in early life
- Implications of colostrum storage & management practices...

Conclusions

- This characterization may be indicative of naturally occurring colostral microbiome
- Fresh colostrum was observed to be:
 - diverse in community membership
 - homogenous composition within sample population
- Work is ongoing to understand impact on calf health and development
 - Viability and function
 - Seeding
 - Colostrum management practices

Acknowledgments

Teagasc

Professor David Kenny
Dr. Bernadette Earley
Dr. Paul Smith
Dr. Matthew S.J. Finnie
Mr. Ricki Fitzgerald
Dairygold Research Farm
Staff

UCD

Dr. Catherine McAloon

UoG

Professor Sinead Waters

Funding

Horizon 2020 Grant Agreement N° 101000213

HoloRuminant PARTNERS

Thank you for your time

Sabine.Scully@Teagasc.ie

Office: +353 (0)46 906 1199

LinkedIn: Sabine Scully

Twitter: @SabsScully

