Peer-reviewed publications

2025

  • Characterisation of the bacterial and archaeal microbiota in fresh colostrum collected from a single, spring-calving dairy herd. Sabine Scully, Bernadette Earley, Paul E. Smith, Matthew S. McCabe, Catherine McAloon, David A. Kenny, Sinead M. Waters. (upcoming).
  • Temporal establishment of the colon microbiota in Angus calves from birth to post-weaning. Michelle M Stafford, Paul E Smith, Sinead M Waters,  Frank Buckley,  Steven McLoughlin,  Stuart F Kirwan,  Eoin O’Hara, David A Kenny (upcoming).
  • CompareM2 is a genomes-to-report pipeline for comparing microbial genomes. Kobel, Carl M, Aho, Velma T E, Øyås, Ove, Nørskov-Lauritsen, Niels, Woodcroft, Ben J, Pope, Phillip B. Bioinformatics 2025. ISSN 1367-4811. DOI: 10.1093/bioinformatics/btaf517. (09/25).
  • Metabolic capabilities of key rumen microbiota drive methane emissions in cattle. Lai WAlberdi ALeu Ade Leon AVPKobel CMAho VTERoehe RPope PB, Hvidsten TR. 0. mSystems 0:e00601-25. DOI: doi.org/10.1128/msystems.00601-25 (09/25).
  • Response of primary mammary epithelial cells to pathogen challenge in dairy cows with divergent genomic breeding values for udder health. Terhi Iso-Touru, Daniel Fischer, Frank Panitz, Suvi Taponen, Zexi Cai, Goutam Sahana, Ilma Tapio, Johanna Vilkki, Genomics, Volume 117, Issue 5, 2025, 111102, ISSN 0888-7543, DOI: https://doi.org/10.1016/j.ygeno.2025.111102. (08/25).
  • Protozoal populations drive system-wide variation in the rumen microbiome. Kobel, C.M., Leu, A., Vera-Ponce de León, A. et al.  Nat Commun 16, 6238 (2025). DOI: 10.1038/s41467-025-61302-2 (07/25).
  • Rumen microbiota associated with feed efficiency in beef cattle are highly influenced by diet composition. Abimael Ortiz-Chura, Karla Fabiola Corral-Jara, Jeremy Tournayre, Gonzalo Cantalapiedra-Hijar, Milka Popova, Diego P. Morgavi, Animal Nutrition, Volume 21, 2025, Pages 378-389, ISSN 2405-6545, DOI: https://doi.org/10.1016/j.aninu.2024.11.027. (06/25).
  • Duration of dam contact had a long effect on calf rumen microbiota without affecting growth. Voland, L., A. Ortiz-Chura, J. Tournayre, B. Martin, M. Bouchon, A. Nicolao, D. Pomies, D. P. Morgavi, and M. Popova. Front Vet Sci Volume 12 – 2025 | DOI://doi.org/10.3389/fvets.2025.1548892 (05/25).
  • Can high-lipid concentrates offset the high enteric methane production caused by high-forage diets fed to lactating dairy cows N. Ayanfe, I. Tapio, S. Ahvenjärvi, M. Rinne, A. Sairanen, A.R. Bayat, Journal of Dairy Science, Volume 0, Issue 0. DOI: 10.3168/jds.2024-26108 (05/25).
  • Effects of feed additives in the diet of male dairy beef calves on physiological status and rumen microbial fermentation pre- and postweaning. E. Romera-Recio, E. Ramos-Morales, A. Belanche, M. Hassan, P. Romero, A. Gómez, I. Rivelli, N. Llanes, J. Torra, D.R. Yáñez-Ruiz, Animal Feed Science and Technology, Volume 321, 2025, 116243, ISSN 0377-8401, DOI:10.1016/j.anifeedsci.2025.116243. (01/25).

2024

  • Ruminant microbiome data are skewed and unFAIR, undermining their usefulness for sustainable production improvement. Ortiz-Chura, A., Popova, M. & Morgavi, D.P.  anim microbiome 6, 61 (2024). DOI: 10.1186/s42523-024-00348-x 10/24
  • Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants. Belanche, Alejandro et al. Journal of Dairy Science, Volume 108, Issue 1, 375 – 394 DOI: 10.3168/jds.2024-25046 08/24
  • Health-associated changes of the fecal microbiota in dairy heifer calves during the pre-weaning period. Scully S, Earley B, Smith PE, McAloon C and Waters SM (2024) Front. Microbiol. 15:1359611. DOI: 10.3389/fmicb.2024.1359611 04/24
  • Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production. Roques S, Martinez-Fernandez G, Ramayo-Caldas Y, et al.  Annual Review of Animal Biosciences. 2024 Feb;12:321-343. DOI: 10.1146/annurev-animal-021022-024931 02/24
  • Genes and pathways revealed by whole transcriptome analysis of milk derived bovine mammary epithelial cells after Escherichia coli challenge. Iso-Touru, T., Panitz, F., Fischer, D. et al.  Vet Res 55, 13 (2024). DOI:10.1186/s13567-024-01269-y 02/24

2022

  • Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd- and branched-chain fatty acids in feces. Yang, H., Heirbaut, S., Jing, X. et al. J Animal Sci Biotechnol 13, 87 (2022). October 5, 2022. DOI:https://doi.org/10.1186/s40104-022-00738-8 10/22
  • Subacute ruminal acidosis phenotypes in periparturient dairy cows differ in ruminal and salivary bacteria and in the in vitro fermentative activity of their ruminal microbiota H. Yang S. Heirbaut J. Jeyanathan N. De Neve L. Vandaele V. Fievez. Journal of Dairy Science. February 24, 2022. DOI:https://doi.org/10.3168/jds.2021-21115 02/22